Zur Polymorphie von SrTeO₃

H.-G. BURCKHARDT, M. KOÇAK, N. KÜLCÜ, UND M. TRÖMEL

Institut für Anorganische Chemie der Johann Wolfgang Goethe-Universität, Niederurseler Hang, D-6000 Frankfurt am Main 50, Bundesrepublik Deutschland

Received January 24, 1984

Beside the transition into a ferroelectric phase at 583 K, monoclinic SrTeO₃(I) at \approx 1260 K transforms slowly into a high-temperature form (SrTeO₃(II)) which after quenching undergoes rapid phase transitions at 648 and 733 K. X-Ray data of triclinic α -SrTeO₃(II) (room temperature), monoclinic β -SrTeO₃(II) (660 K), and monoclinic γ -SrTeO₃(II) (770 K) are presented.

Neben dem Übergang in eine ferroelektrische Phase bei 583 K erfährt monoklines SrTeO₃(I) bei \gtrsim 1260 K eine langsame Umwandlung in eine Hochtemperaturform (SrTeO₃(II)), die bei 648 K bzw. bei 733 K schnelle Phasenumwandlungen durchläuft. Röntgenbeugungsdaten für triklines α -SrTeO₃(II) (Raumtemperatur), monoklines β -SrTeO₃(II) (660 K), und monoklines γ -SrTeO₃(II) (770 K) werden mitgeteilt.

Einleitung

Monoklines SrTeO₃ ist zwischen 583 und 758 K ferroelektrisch, wobei die b-Achse die Richtung des größten Wertes der spontanen Polarisation ist (1). Für diese Gitterkonstante fanden Ismailzade et al. (2) bei 583 K eine diskontinuierliche Änderung, während die monokline Symmetrie erhalten bleibt. Bei 758 K gehen die ferroelektrischen Eigenschaften in einer Umwandlung zweiter Ordnung verloren. Eine weitere, trikline Form von SrTeO3 erhält man beim Abkühlen entsprechend zusammengesetzter Proben von Temperaturen ≥ 1275 K, und die Untersuchung durch Hochtemperatur-Röntgenbeugung und Differentialthermoanalyse zeigt, daß weitere metastabile Formen der Verbindung auftreten.

Experimentelles

Die Hochtemperatur-Röntgenbeugungsuntersuchungen führten wir mit einer Huber Hochtemperatur-Guinier-Kamera System 600/631-632 (Quarzmonochromator, $CuK\alpha_1$ -Strahlung) aus. Wegen der stark störenden Absorption wurden die Proben im Verhältnis von ca. 1:10 mit Ouarzglasmehl verdünnt, das bei Temperaturen bis ca. 900 K nicht mit Strontiumtelluraten reagiert. Die Filmaufnahmen wurden mit einem Mikrodensitometer Nonius Y 874 ausgemessen. Röntgenbeugungs-Zimmertemperatur untersuchungen bei wurden mit dem Zählrohr-Guinier-Gerät Huber System 600/641 mit gleichem Monochromator und gleicher Strahlung wie oben ausgeführt. Bei diesen Aufnahmen diente

TABELLE I
INDIZIERTE RÖNTGEN-PULVERAUFNAHME VON α -SrTeO₃(II) (RAUMTEMPERATUR, Cu $K\alpha_1$ -Strahlung)

h k l	$d_{\rm c}({\rm pm})$	<i>d</i> ₀ (pm)	I/I_0	h k l	d _c (pm)	d ₀ (pm)	I/I_0
100	834	839	20	0 3 1	208,9	209,0	10
200	417	418	22	$\bar{4} \; \bar{2} \; 1$	208,9		
$1 \overline{1} 1$	411	410	23	051	206,4	206,5	8
$\frac{\overline{1}}{1} \frac{1}{2} \frac{1}{1}$	410			421	206,3		
$\overline{1} \overline{2} 1$	409			1 4 2	205,3	205,4	30
121	399,0	399,0	14	$\bar{3}$ 2 1	205,8		
021	398,5			4 4 0	204,1	204,2	23
130	392,8	393,1	8	$\frac{\overline{3}}{\overline{3}}\frac{0}{\overline{3}}\frac{2}{2}$	202,2	202,6	27
030	370,4	370,5	18	$\frac{\overline{3}}{\overline{3}}\frac{0}{\overline{3}}\frac{2}{2}$	201,4	201,3	15
$\bar{2} \; \bar{2} \; 1$	338,2	338,3	54	$2\overline{4}0$	201,2		
$1\bar{2}1$	332,5	332,9	61	302	200,1	200,2	67
<u>2</u> 2 1	330,7	330,9	100	$\frac{3}{3}\frac{0}{6}\frac{2}{1}$	179,3	179,5	7
ī 2 1	329,9	329,2	18	061	177,4	177,2	12
$0\bar{3}1$	315,3	315,5	9	$\overline{2} \overline{2} 3$	177,1		
$1\bar{3}0$	301,8	302,1	9	361	176,7	176,6	6
140	296,1	296,1	28	123	175,6	175,6	10
002	291,5	291,6	36	061	175,6		
300	277,9	278,6	23	ī 2 3	174,4	174,4	14
$\frac{1}{3}$ $\frac{1}{2}$ 1	263,6	263,6	6	510	174,0	-	
3 2 1	259,2	259,3	11	223	173,9	173,9	11
2 2 1	259,0			540	171,6	171,7	4
$\overline{2}$ $\overline{2}$ 1 0 $\overline{3}$ 2	258,5	258,3	6	$\frac{1}{5}$ $\frac{1}{2}$ 1	170,7	170,4	13
	231,2	231,6	6	$\frac{4}{4}\frac{0}{4}\frac{2}{2}$	170,4		
$\frac{251}{142}$	214,0	214,0	6	442	169,1	169,1	11
1 4 2	210,2	210,2	16	5 2 1	169,0		
				160	168,8	168,4	7

Bleinitrat (a = 785,66 pm, (3)) als innerer Standard.

Zur Differentialthermoanalyse diente eine Rigaku Thermoflex-Apparatur. Sr TeO₃ wurde gegen Al₂O₃ als Inertsubstanz bei Temperaturänderungen zwischen 1,25 und 10 K/min untersucht.

Ergebnisse

Alle Proben von SrTeO₃, die bei Temperaturen < 1260 K dargestellt oder längere Zeit erhitzt worden waren, zeigten das Röntgenpulverdiagramm des monoklinen SrTeO₃. Die Phasenumwandlung bei 583 K trat in der DTA-Kurve beim Aufheizen und Abkühlen als scharfer Effekt in Erscheinung, d.h. die Phasenumwandlung läuft rasch und umkehrbar ab. Zwischen 1260 und 1290 K tritt ein zusätzlicher, breiter, beim Aufheizen endothermer Effekt auf. Für den Schmelzpunkt von SrTeO₃

fanden wir 1308 K, in Übereinstimmung mit dem Literaturwert von 1303 K (4, 5).

Proben, die aus der Schmelze dargestellt oder einige Zeit bei **Temperaturen** zwischen 1270 und 1300 K gehalten und dann rasch abgekühlt worden waren, zeigten das Röntgenpulverdiagramm einer zweiten Form von SrTeO₃ (Tabelle I), von der auch Einkristalle erhalten werden konnten. Gitterkonstanten wurden aus Weißenberg und Präzessionsaufnahmen bestimmt und nach einer Zählrohr-Guinier-Aufnahme verfeinert. Die Verbindung kristallisiert demnach triklin mit a = 888,5(6) pm, b =1184,9(4) pm, c = 583,4(6) pm, $\alpha =$ $91.39(4)^{\circ}$, $\bar{\beta} = 91.02(4)^{\circ}$, $\gamma = 69.66(4)^{\circ}$ (6).

Nach diesem Befund ist der breite DTA-Effekt auf eine langsam ablaufende Phasenumwandlung bei ca. 1270 K zurückzuführen. Wegen der geringen Umwandlungsgeschwindigkeit erhält man bei Raumtemperatur metastabile Hochtemperaturform röntgenographisch bzw. in Form gut ausgebildeter Einkristalle. Wir bezeichnen die monokline Form als SrTeO₃ (I), die bei hohen Temperaturen entstehende als SrTeO₃(II) bzw. im folgenden Text kurz als (I) bzw. (II). Die DTA-Untersuchung von (II) zeigt zwei weitere beim Aufheizen endotherme scharfe. Effekte bei 648(5) K bzw. 733(5) K, die beim Abkühlen bei den gleichen Temperaturen erscheinen, d.h. rasch ablaufenden, umkehrbaren Reaktionen entsprechen. Hochtemperatur-Guinier-Aufnahmen, beginnend bei 380 K, zeigten oberhalb dieser Umwandlungstemperaturen die Diagramme zweier bisher ebenfalls unbekannter Phasen. Bei 920 K und höheren Temperaturen trat wieder das Diagramm von (I) auf, d.h. bei dieser Temperatur wird wieder die stabile Form gebildet. Die Röntgenbeugungsaufnahmen der neuen Phasen sind denen des triklinen SrTeO₃(I) entfernt ähnlich und können in Entsprechung zu diesem, jedoch monoklin indiziert werden (Tabellen II und III). Die Gitterkonstanten betragen:

Aufnahmetemperatur (K)	a(pm)	b(pm)	c(pm)	$oldsymbol{eta}(^\circ)$
660	1191,0(2)	593,9(1)	872,2(2)	109,19(1)
770	1200,5(3)	588,4(2)	891,2(3)	109,17(1)

Die Ähnlichkeit der Diagramme und der Gitterkonstanten deutet auf strukturelle Verwandtschaft der drei Formen hin.

Die Phasenumwandlungen von $SrTeO_3$ unterscheiden sich auffällig in ihrer Geschwindigkeit. Während die Umwandlung von (I) in (II) langsam abläuft, sind die weiteren Umwandlungen dieser Hauptformen schnell und wohl nur mit geringen Strukturänderungen verknüpft. Diese Verhältnisse erinnern in mancher Hinsicht an diejenigen bei SiO_2 , dessen Hauptmodifikationen sich nur langsam ineinander umwandeln, während jede noch die rasch ablaufenden α - β -Umwandlungen zeigt.

TABELLE II
Indizierte Röntgen-Pulveraufnahme von β-SiTeO₃(II) (660 K, CuKα₁-Strahlung)

hkl	$d_{\rm c}({\rm pm})$	$d_0(pm)$	I/I_0	h k l	$d_{\rm c}({\rm pm})$	$d_0(pm)$	I/I_0
100	1125	1112	7	1 2 2	245,4	245,2	7
001	824	817	29	302	240,7	240,7	13
110	525	522	2	3 2 1	237,1	237,2	6
$1 \overline{1}$	477	477	<1	320	232,8	232,8	18
102	436	435	<1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	229,3	229,1	12
111	415	415	28	322	223,1	223,1	10
002	412	411	18	5 1 2	216,2	216,2	19
201	406	405	18	$4 \ 2 \ 1$	210,2	210,2	100
30Ī	393	392	5	222	207,5	207,4	6
300	375	375	18	004	205,9	206,0	9
102	351	351	8	$21\overline{4}$	204,5	204,5	13
211	335,4	334,4	83	402	203,2	203,2	18
212	332,3	331,9	83	023	201,6	201,5	61
310	317,0	316,6	12	$40\bar{4}$	200,5	200,4	37
301	305,5	305,4	6	5 1 1	190,3	190,4	23
020	296,9	296,8	79	$61\bar{1}$	187,3	187,3	28
312	293,8	293,4	3	230	186,7	186,7	32
$10\bar{3}$	289,6	289,3	12	3 1 3	183,8	183,9	2
120	287,1	287,4	20	$13\overline{2}$	180,2	180,3	3
$12\overline{1}$	278,5	278,6	12	610	178,8	178,8	21
003	274,6	274,3	26	231	178,0	177,9	20
311	271,6	271,7	12	$61\bar{3}$	177,4	177,4	61
220	262,6	262,8	12	$10\bar{5}$	171,3	171,3	12
$11\bar{3}$	260,3	260,2	13	024	169,2	169,3	<1
$21\bar{3}$	258,2	258,1	23	70 $\bar{1}$	168,5	168,6	6
				$31\bar{5}$	166,3	166,3	27
				4 1 <u>3</u>	163,8	163,8	6
				$61\bar{4}$	162,6	162,6	9

Dementsprechend unterscheiden wir die verschiedenen Formen als α - und β -Sr TeO₃(I) bzw. als α -, β -, und γ -SrTeO₃(II). Dabei bestehen die Gleichgewichte

$$\alpha\text{-SrTeO}_3(I) \xrightarrow{583 \text{ K}} \beta\text{-SrTeO}_3(I) \xrightarrow{\text{ca. } 1260 \text{ K}} \\ \text{SrTeO}_3(II) \xrightarrow{1308 \text{ K}} \text{Schmelze}.$$

Da die Hochtemperatur-Röntgenbeugungsuntersuchung aus apparativen Gründen nicht bis über 1260 K ausgedehnt werden konnte, ist nicht sicher, ob das oberhalb dieser Temperatur gebildete SrTeO₃(II) mit dem bei 733 K entstehenden γ-SrTeO₃(II) identisch ist. Das Fehlen thermischer Effekte in den DTA-Abkühlungskurven macht dies jedenfalls wahrscheinlich.

TABELLE III Indizierte Röntgen-Pulveraufnahme von γ -SrTeO₃(II) (770 K, Cu $K\alpha_1$ -Strahlung)

hkl	d _c (pm)	$d_0(pm)$	I/I_0	hkl	d _c (pm)	d ₀ (pm)	I/I_0
100	1134	1124	14	3 2 1	236,4	236,0	<1
001	842	839	31	113	232,9	233,3	27
110	522	521	<1	320	232,2	232,1	27
111	477	477	4	5 O O	226,8	226,9	13
$10\bar{2}$	445	444	2	$51\overline{2}$	217,7	217,9	18
002	421	420	16	510	211,6	211,7	18
111	416	416	21	004	210,4	210,3	89
$21\bar{1}$	407	406	19	222	208,2	208,3	20
3 O Ī	397	396	6	402	205,9	206,0	25
300	378	377	18	404	204,0	204,0	52
102	358	357	6	$31\bar{4}$	203,2	203,3	86
211	337,4	336,8	100	60Ī	198,9	198,7	6
$21\overline{2}$	335,3	334,3	100	5 1 <u>1</u>	191,8	191,7	2
310	318,0	317,7	10	611	188,4	188,3	23
301	309,0	308,4	11	$4 \ 2 \ 3$	187,5	187,6	23
401	300,1	299,9	32	131	186,1	186,1	8
$10\bar{3}$	296,0	295,6	17	230	185,4	185,4	8
020	294,2	293,9	74	610	179,9	180,0	24
402	281,9	281,5	6	5 1 4	179,2	179,1	45
003	280,6	279,8	20	2 3 <u>1</u>	177,1	177,1	63
311	273,6	273,5	6	$12\bar{4}$	176,3	176,2	14
2 1 <u>2</u>	263,6	263,6	18	604	171,3	171,4	19
$21\bar{3}$	261,9	262,1	33	424	167,7	167,7	3
$40\bar{3}$	243,3	243,5	8	413	166,0	166,1	5
501	239,6	239,5	3	124	162,9	163,0	13

Neben diesen Gleichgewichten zwischen den stabilen Phasen treten noch die Umwandlungen

$$\alpha\text{-SrTeO}_3(II) \xleftarrow{648 \text{ K}} \beta\text{-SrTeO}_3(II) \xleftarrow{733 \text{ K}} \gamma\text{-SrTeO}_3(II)$$

auf. Ferner geht γ -SrTeO₃(II) oberhalb von ca. 900 K im Verhältnis zur Dauer einer Hochtemperatur-Röntgenbeugungsaufnahme (3 Stunden) rasch in das bei dieser Temperatur stabile β -SrTeO₃(I) über. Etwaige weitere, unter diesen Bedingungen nur kurzzeitig existierende metastabile Phasen wären unter diesen Umständen kaum noch zu erfassen.

Die geringe Geschwindigkeit des (I)-(II)-Überganges spricht dafür, daß es sich hier um eine rekonstruktive Umwandlung (8) handelt. Dies wird durch die Kristallstrukturbestimmung von α-SrTeO₃(I) und α-Sr TeO₃(II) (6, 7) gestützt. In beiden Fällen sind die Schweratomanordnungen komplizierte Überstrukturen allseitig flächenzentrierter Anordnungen, wobei sich die Verteilung von Strontium und Tellur auf einander entsprechenden Lagen unterscheidet. Die Überführung der einen Form in die andere setzt daher Platzwechsel dieser Atome zwischen vergleichbaren Lagen und damit einen weitgehenden Umbau der Struktur voraus.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung dieser Untersuchung.

Literatur

- T. YAMADA UND H. IWASAKI, Appl. Phys. Lett. 21, 89 (1972).
- I. H. ISMAILZADE, A. YU. KUDZIN, UND L. YA. SADOVSKAYA, *Phys. Status Solidi A* 52, K 105 (1979).
- "International Tables for X-Ray Crystallography,"
 Vol. III, Kynoch Press, Birmingham (1968).
- S. A. MALYUTIN, K. K. SAMPLAVSKAYA, UND M.KH. KARAPET'YANTS, Russ. J. Inorg. Chem. 16, 796 (1971).
- S. A. MALYUTIN, K. K. SAMPLAVSKAYA, UND M.KH. KARAPET'YANTS, Russ. J. Inorg. Chem. 16, 916 (1971).
- H.-G. BURCKHARDT, Y. ELERMAN, H. FUESS, M. KOÇAK, CHR. PLATTE, UND M. TRÖMEL, in Vorbereitung.
- H.-G. Burckhardt, Dissertation Frankfurt/M. (1983).
- 8. M. Buerger, Fortschr. Mineral. 39, 9 (1961).